Diskuze v psychologii 2022, 4(2):61-72 | DOI: 10.5507/dvp.2023.006

Effects of non-driving related tasks during autonomous driving

Miroslava Horáková

The presented study deals with the topic of non-driving related tasks in the context of driving in autonomous mode. In the introduction, the levels of automation are defined and the pitfalls of the L3 level (third level of automation, conditional automation), are described, especially with regard to takeover performance. A takeover is defined both in terms of its speed and quality. The individual variables measured in this context are described. Subsequently, the concept of non-driving related tasks is described both in a broader context (manual driving) and in a narrower context (driving in autonomous mode). Non-driving related tasks have a negative effect on takeover performance, takeover time, incidence of collisions and time to collision (TTC). In this context, the time required to takeover the driving task s is discussed, which will enable a quality takeover. The types of activities in terms of their characteristics (sensory modality, cognitive demand, manual load etc.) vary in the degree they influence takeover performance. Visual, cognitively demanding, and manual activities have the greatest negative influence. The explanation for effects of non-driving related tasks s is then embedded in a theoretical framework in the form of the Wicken's Multiple Ressources Model.

Keywords: non-driving related task; autonomous driving; autonomous vehicle; levels of automation; takeover performance; takeover request; takeover time

Received: January 27, 2023; Revised: June 12, 2023; Accepted: July 11, 2023; Published: November 22, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Horáková M. Effects of non-driving related tasks during autonomous driving. Diskuze v psychologii. 2022;4(2):61-72. doi: 10.5507/dvp.2023.006.
Download citation

References

  1. Bourrelly, A., de Naurois, C., Zran, A., Rampillon, F., Vercher, J.-L., & Bourdin, C. (2019). Long automated driving phase affects take-over performance. IET Intelligent Transport Systems, 13, 1249-1255. https://doi.org/10.1049/iet-its.2019.0018 Go to original source...
  2. Bubb, H. (2002). Der Fahrprozess. Informationsverarbeitung durch den Fahrer. In Tagungsband: Technischer Kongress 2002. Sicherheit durch Elektronik - Fahrzeugsicherheit, Elektronik (pp. 19-31). VDA - Verband der Automobilindustire.
  3. Caird, Jeff K., Willness, C. R., Steel, P., & Scialfa, C. (2008). A meta-analysis of the effects of cell phones on driver performance. Accident Analysis & Prevention, 40(4), 1282-1293. https://doi.org/10.1016/j.aap.2008.01.009 Go to original source...
  4. Caird, Jeff K., Simmons, S. M., Wiley, K., Johnston, K. A., & Horrey, W. J. (2018). Does talking on a cell phone, with a passenger, or dialing affect driving performance? An updated systematic review and meta-analysis of experimental studies. Human factors, 60(1), 101-133. https://doi.org/10.1177/0018720817748145 Go to original source...
  5. Carsten, O., Lai, F., Barnard, A., Merat, N., & Jamson, A. (2012). Control task substitution in semi automated driving: Does it matter what aspects are automated? Human Factors: The Journal of the Human Factors and Ergonomics Society, 54(5), 747-761. https://doi.org/10.1177/0018720812460246 Go to original source...
  6. Casner, S. M., Geven, R. W., Recker, M. P., State, S. J., & Schooler, J. W. (2014). The retention of manual flying skills in the automated cockpit. Human Factors: The Journal of the Human Factors and Ergonomics Society, 56(8), 1506-1516. https://doi.org/10.1177/0018720814535628 Go to original source...
  7. Casner, S. M., & Schooler, J. W. (2014). Thoughts in flight: Auto-mation use and pilots' task-related and task-unrelated thought. Human Factors, 56(3), 433-442. https://doi.org/10.1177/0018720813501550 Go to original source...
  8. Damböck, D., Farid, M., Tönert, L., & Bengler, K. (2012). Übernahmezeiten beim hochautomatisierten Autofahren, in Tagung Fahrerassistenz, München, Germany. https://mediatum.ub.tum.de/doc/1142102/1142102.pdf
  9. DeGuzman, C. A., Hopkins, S. A., & Donmez, B. (2020). Driver takeover performance and monitoring behavior with driving automation at systém limit versus system-malfunction failures. Transportation Research Record: Journal of the Transportation Research Board, 2674(4), 140-151. https://doi.org/10.1177/0361198120912228 Go to original source...
  10. De Winter, J., Happee, R., Martens, M., & Stanton, N. A. (2014). Effects of adaptive cruise control and highly automated driving on workload and situation awareness: A review of the empirical evidence. Transportation Research Part F: Traffic Psychology and Behaviour, 24, 196-217. http://dx.doi.org/10.1016/j.trf.2014.06.016 Go to original source...
  11. De Winter, J. de, Stanton, N. A., Price, J. S., & Mistry, H. (2016). The effects of driving with different levels of unreliable automation on self-reported workload and secondary task performance. International Journal of Vehicle Design, 70(4), 297-324. https://doi.org/10.1504/IJVD.2016.076736 Go to original source...
  12. Dingus, T. A., Hanowski, R. J., & Klauer, S. G. (2011). Estimating Crash Risk. Ergonomics in Design, 19(4), 8-12. https://doi.org/10.1177/1064804611423736 Go to original source...
  13. Dogan, E., Honnęt, V., Masfrand, S., & Guillaume, A. (2019). Effects of non-driving-related tasks on takeover performance in different takeover situations in conditionally automated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 62, 494-504. https://doi.org/10.1016/j.trf.2019.02.010 Go to original source...
  14. Eriksson, A., & Stanton, N. A. (2017). Takeover time in highly automated vehicles: noncritical transitions to and from manual control. Hum. Factors 59(4), 689-705. https://doi.org/10.1177/0018720816685832 Go to original source...
  15. Fagnant, D. J., & Kockelman, K., 2015. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transport. Res. Pol. Pract., 77, 167-181. https://doi.org/10.1016/j.tra.2015.04.003 Go to original source...
  16. Feldhütter, A., Gold, C., Schneider, S., Bengler, K. (2017). How the Duration of Automated Driving Influences Take-Over Performance and Gaze Behavior. In C. Schlick et al. (Eds.), Advances in Ergonomic Design of Systems, Products and Processes (309-318). Springer. Go to original source...
  17. Feldhütter, A., Hecht, T., Kalb, L., & Bengler, K. (2019). Effect of prolonged periods of conditionally automated driving on the development of fatigue: With and without non-driving-related activities. Cognition, Technology & Work, 21, 33-40. https://doi.org/10.1007/s10111-018-0524-9 Go to original source...
  18. Geiser, G. (1985). Mensch-Maschine-Kommunikation im Kraftfahrzeug. Automobiltechnische Zeitschrift ATZ, 87, 74-77, 1985. GWV Fachverlage GmbH.
  19. Gold, G., Damböck, D., Lorenz, L., & Bengler, K. (2013). "Take over!" How long does it take to get the driver back into the loop?. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2013. https://doi.org/ 10.1177/0018720816685832 Go to original source...
  20. Gold, C., & Bengler, K. (2014). Taking Over Control from Highly Automated Vehicles. Proceedings of the Human Factors Society Annual Meeting, 8(64), 64-69. https://doi.org/10.1177/0018720816634226 Go to original source...
  21. Gold, C., Happee, R., & Bengler, K. (2017). Modeling take-over performance in level 3 conditionally automated vehicles. Accident Analysis & Prevention, 116, 3-13. https://doi.org/10.1016/j.aap.2017.11.009 Go to original source...
  22. Gonçalves, J., Happee, R., & Bengler, K. (2016). Drowsiness in conditional automation: proneness, diagnosis and driving performance effects. In IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (pp. 873-878). Rio de Janeiro, Brazil. https://doi.org/10.1109/ITSC.2016.7795658 Go to original source...
  23. Hedlund, J., Simpson, H. M., & Mayhew, D. R. (2006). International conference on distracted driving: Summary of proceedings and recommendations: October 2-5, 2005.
  24. Huemer, A. K., & Vollrath, M. (2011). Driver secondary tasks in Germany: using interviews to estimate prevalence. Accident Analysis & Prevention, 43(5), 1703-1712. https://doi.org/10.1016/j.aap.2011.03.029 Go to original source...
  25. Choi, D., Sato, T., Ando, T., Abe, T., Akamatsu, M., & Kitazaki, S. (2020). Effects of cognitive and visual loads on driving performance after take-over request (TOR) in automated driving. Applied Ergonomics, 85, 103074. https://doi.org/ 10.1016/j.apergo.2020.103074 Go to original source...
  26. Jamson, A. H., Merat, N., Carsten, & O. M., Lai, F. (2013). Behavioural changes in drivers experiencing high automated vehicle control in varying traffic conditions. Transp. Res. Part C, 116-125. https://doi.org/10.1016/j.trc.2013.02.008 Go to original source...
  27. Jeong, H., & Liu, Y. (2019). Effects of non-driving-related-task modality and road geometry on eye movements, lane-keeping performance, and workload while driving. Transport. Res. F Traffic Psychol. Behav., 60, 157-171. https://doi.org/ 10.1016/j.trf.2018.10.015 Go to original source...
  28. Lansdown, T. D., Brook-Carter, N., &Kersloot, T. (2004). Distraction from multiple invehicle secondary tasks: vehicle performance and mental workload implications. Ergonomics, 41(1), 91-104. https://doi.org/10.1080/00140130310001629775 Go to original source...
  29. Litman, T. (2018). Autonomous vehicle implementation predictions: Implications for transport planning. Vitoria Transport Policy Institute. https:// www. vtpi. org/ avip.pdf
  30. Louw, T., Markkula, G., Boer, E., Madigan, R., Carsten, O., & Merat, N. (2017). Coming back into the loop: Drivers' perceptual-motor performance in critical events after automated driving. Accident Analysis & Prevention, 108, 9-18. https://doi.org/10.1016/j.aap.2017.08.011 Go to original source...
  31. Lu, Z., Coster, X., & de Winter, J. (2017). How much time do drivers need to obtain situation awareness? A laboratory-based study of automated driving. Applied ergonomics, 60, 293-304. https://doi.org/10.1016/j.apergo.2016.12.003 Go to original source...
  32. Mengelkoch, R. F., Adams, J. A., & Gainer, C. A. (1971). The forgetting of instrument flying skills. Human Factors, 13(5), 397-405. Go to original source...
  33. Merat, N., Jamson, A. Hamish, L., Frank C. H., Daly, M., & Carsten, O. M. J. (2014). Transition to manual: Driver behaviour when resuming control from a highly automated vehicle. Transportation Research: Part F. Part B, 27, 274-282. https://doi.org/10.1016/J.TRF.2014.09.005 Go to original source...
  34. Minhas, S., Hernández-Sabaté, A., Ehsan, S., & McDonald-Maier, K. D. (2022). Effects of Non-Driving Related Tasks During Self-Driving Mode. IEEE Transactions on Intelligent Transportation Systems, 23(2), 1391-1399. https://doi.org/10.1109/TITS.2020.3025542 Go to original source...
  35. Mok, B., Johns, M., Lee, K. J., Miller, D., Sirkin, D., Ive, P., & Ju, W. (2015). Emergency, Automation Off: Unstructured Transition Timing for Distracted Drivers of Automated Vehicles. IEEE 18th International Conference on Intelligent Transportation Systems (ITSC). https://doi.org/10.1109/ITSC.2015.396 Go to original source...
  36. Müller, A. L. (2020). Auswirkungen von naturalistischen fahrfremden Tätigkeiten während hochautomatisierter Fahrt. Dissertation. Technische Universität, Darmstadt. https://doi.org/10.25534/tuprints-00011342 Go to original source...
  37. Nasr, V., Wozniak, D., Shahini, F., & Zahabi, M. (2021). Application of Advanced Driver-Assistance Systems in Police Vehicles. Transportation Research Record: Journal of the Transportation Research Board, 2675(10), 1453-1468. https://doi.org/10.1177/03611981211017144 Go to original source...
  38. Naujoks, F., Neukum, A., & Befelein, D. (2016). Welche Aspekten fahrfremder Tätigkeiten schränken die Übernahmefähigkeit beim hochautomatisieten Fahren. Conference: VDI/VW Gemeinschaftstagung "Fahrerassistenz und automatisiertes Fahren", Wolfsburg, volume 32. https://www.researchgate.net/publication/309843894_Welche_Aspekte_fahrfremder_Tatigkeiten_schranken_die_Ubernahmefahigkeit_beim_hochautomatisierten_Fahren_ein Go to original source...
  39. Naujoks, F., Wiedemann, K., Schömig, N., Jarosch, O., & Gold, C. (2018). Expert-based controllability assessment of control transitions from automated to manual driving. MethodsX, 5, 579-592. https://doi.org/10.1016/j.mex.2018.05.007 Go to original source...
  40. Naujoks, F., Höfling, S., Purucker, C., & Zeeb, K. (2018). From partial and high automation to manual driving: Relationship between non-driving related tasks, drowsiness and take-over performance. Accid. Anal. Prev., 121, 28-42. https://doi.org/10.1016/j.aap.2018.08.018 Go to original source...
  41. Neubauer, C., Matthews, G., Langheim, L., & Saxby, D. (2012). Fatigue and voluntary utilization of automation in simulated driving. Hum. Factors, 54(5), 734-746. https://doi.org/https://doi.org/10.1177/0018720811423261 Go to original source...
  42. Petermann-Stock, I., Hackenberg, L., Muhr, T., & Mergl, C. (2013). Wie lange braucht der Fahrer? Eine Analyse zu Übernahmezeiten aus verschiedenen Nebentätigkeiten ährend einer hochautomatisierten Staufahrt. In Der Weg zum automatischen Fahren. 6. Tagung Fahrerassistenz (pp. 1-26).
  43. Petermeijer, S., Winter, J. de, & Bengler, K. (2016). Vibrotactile Displays. A Survey With a View on Highly Automated Driving. IEEE Transactions on Intelligent Transportation Systems, 17(4), 897-907. https://doi.org/ 10.1109/TITS.2015.2494873 Go to original source...
  44. Pfleging, B., Rang, M., & Broy, N. (2016). Investigating user needs for non-driving-related activities during automated driving. In Proceedings of the 15th international conference on mobile and ubiquitous multimedia (pp. 91-99). ACM. https://doi.org/10.1145/3012709.3012735 Go to original source...
  45. Prahl, A., & Enright, R. (2017). Forgiving computers: The rise of automation and implications for counseling. Counseling and Values, 62, 144-158. https://doi.org/10.1002/cvj.12056 Go to original source...
  46. Radlmayr, J., Gold, C., Lorenz, L., Farid, M., & Bengler, K. (2014). How Traffic Situations and Non-Driving Related Tasks Affect the Take-Over Quality in Highly Automated Driving. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 58(1), 2063-2067. https://doi.org/10.1177/1541931214581434 Go to original source...
  47. Radlmayr, J., Fischer, F. M., & Bengler, K. (2019). The Influence of Non-driving Related Tasks on Driver Availability in the Context of Conditionally Automated Driving. In S. Bagnara, R. Tartaglia, S. Albolino, T. Alexander & Y. Fujita (Eds.), Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018) (Advances in Intelligent Systems and Computing, Bd. 823 (pp. 295-304). Springer International Publishing. Go to original source...
  48. Regan, M. A., & Hallett, C. (2011a). Driver distraction: Definition, mechanisms, effects, and mitigation. In B. Porter (Ed.), Handbook of traffic psychology (275-286). Elsevier. Go to original source...
  49. Regan, M. A., Hallett, C., & Gordon, C. P. (2011b). Driver distraction and driver inattention: Definition, relationship and taxonomy. Accident Analysis & Prevention, 43(5), 1771-1781. https://doi.org/10.1016/j.aap.2011.04.008 Go to original source...
  50. Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 763-797. https://doi.org/10.1037/0096-1523.27.4.763 Go to original source...
  51. SAE International (2021). Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems. https://www.sae.org/standards/content/j3016_202104
  52. Shanini, F., & Zahabi, M. (2021). Effects of levels of automation and non-driving related tasks on driver performance and workload: A review of literature and meta-analysis. Applied Ergnomics, 104, 103824. https://doi.org/10.1016/j.apergo.2022.103824 Go to original source...
  53. Shi, E., & Bengler, K. (2022). Non-driving related tasks' effects on takeover and manual driving behavior in a real driving setting: A differentiation approach based on task switching and modality shifting. Accident Analysis & Prevention, 178, 106844. https://doi.org/10.1016/j.aap.2022.106844 Go to original source...
  54. Schömig, N., Metz, B., & Krüger, H. P. (2009). Darf ich oder darf ich nicht? Situationsbewusstsein im Umgang mit Nebenaufgaben während der Fahrt. Zeitschrift für Arbeitswissenschaften, 63, 3-15.
  55. Soares, S., Lobo, A., Ferreira, S., Cunha, L., & Couto, A. (2021). Takeover performance evaluation using driving simulation: a systematic review and meta-analysis. European Transport Research Review, 13(1), 1-18. https://doi.org/10.1186/s12544-021-00505-2 Go to original source...
  56. Spiessl, W. (2011). Assessment and Support of Error Recognition in Automated Driving. Dissertation. Fakultat für Mathematik, Informatik und Statistik, Ludwig-Maxi­milians-Universität, München. Go to original source...
  57. Strayer, D. L., & Fisher, D. L. (2016). SPIDER: A Framework for Understanding Driver Distraction. Human Factors: The Journal of the Human Factors and Ergonomics Society, 58(1), 5-12. https://doi.org/10.1177/0018720815619074 Go to original source...
  58. Strayer, D. L., Cooper, J. M., Turrill, J., Coleman, J. R., & Hopman, R. J. (2017). The smartphone and the driver's cognitive workload: A comparison of Apple, Google, and Microsoft's intelligent personal assistants. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 71(2), 93. https://doi.org/10.1037/cep0000104 Go to original source...
  59. Sumwalt, R. (2003, August). Cockpit monitoring: Using proce-dures to enhance crew vigilance. Professional Pilot, 2-6.
  60. Technologická agentura ČR (2022-2024). Systematizace neřidičských aktivit při řízení v autonomním módu. TAČR, probíhající projekt CK03000063. https://starfos.tacr.cz/cs/project/CK03000063
  61. Taylor, H., Lintern, G., Hulin, C., Talleur, D., Emanuel, T., & Phillips, S. (1999). Transfer of training effectiveness of a personal computer aviation training device. International Journal of Aviation Psychology, 9(4), 319-335. https://doi.org/10.1207/s15327108ijap0904_1 Go to original source...
  62. U. S. Department of transportation - Federal aviation administration (2009). Risk management handbook. https://www.faa.gov/regulations_policies/handbooks_ manuals/aviation/media/FAA-H-8083-2.pdf
  63. Veilette, P. R., & Decker, R. (1995). Differences in aicrew manual skills and automated and conventional flighdecks. Transportation Research Record, 1480, 43-50. http://onlinepubs.trb.org/Onlinepubs/trr/1995/1480/1480-006.pdf
  64. Vogelpohl, T., Kühn M., Hummel, T., & Vollrath, M. (2018). Asleep at the automated wheel. Sleepiness and fatigue during highly automated driving. Accid. Anal. Prev., 126, 70-84. https://doi.org/10.1016/j.aap.2018.03.013 Go to original source...
  65. Vogelpohl, T., Gehlmann, F., & Vollrath, M. (2019). Task interruption and control recovery strategies after take-over requests emphasize need for measures of situation awareness. Human Factors: The Journal of the Human Factors and Ergonomics Society, 62(7), 1190-1211. https://doi.org/10.1177/0018720819866976 Go to original source...
  66. Wan, J., & Wu, C. (2018). The effects of lead time of take-over request and nondriving tasks on taking-over control of automated vehicles. IEEE Transactions on Human-Machine Systems, 48(6), 582-591. https://doi.org/ 10.1109/THMS.2018.2844251 Go to original source...
  67. Wandtner, B., Schömig, N., & Schmidt, G. (2018). Effects of non-driving related task modalities on takeover performance in highly automated driving. Hum. Factors, 60(6), 870-881. https://doi.org/10.1177/0018720818768199 Go to original source...
  68. Wickens, C. D. (1992). Attention, Time-Sharing, and Workload. In C. D. Wickens, J. G. Hollands (Eds.), Engineering Psychology and Human Performance (364-411). Harper-Collins Publishers Inc.
  69. Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical issues in ergonomics science, 3(2), 159-177. https://doi.org/10.1080/14639220210123806 Go to original source...
  70. Wickens, C. D. (2008). Multiple resources and mental workload. Hum. Factors 50(3), 449-455. https://doi.org/10.1518/001872008X288394 Go to original source...
  71. Wu, C., Wu, H., Lyu, N., & Zheng, M. (2019). Take-over performance and safety analysis under different scenarios and secondary tasks in conditionally automated driving. IEEE Access, 7, 136924-136933. https://doi.org/10.1109/ACCESS.2019.2914864 Go to original source...
  72. Yang, Y., Karakaya, B., Dominioni, G. C., Kawabe, K., & Bengler, K. (2018). An HMI Concept to Improve Driver's Visual Behavior and Situation Awareness in Automated Vehicle. In Intelligent Transportation Society (Ed.), World Congress on Intelligent Transport Systems (pp. 650-655). New York: IEEE. https://doi.org/10.1109/ITSC.2018.8569986 Go to original source...
  73. Yang, L., Yang, T. Y., Haochen, L., Shan, X., Brighton, J., Skrypchuk, L., Mouzakitis, A., & Zhao, Y. (2020). A refined non-driving activity classification using a two-stream convolutional neural network. IEEE Sensors Journal, 21(14), 15574-15583. https://doi.org/10.1109/jsen.2020.3005810 Go to original source...
  74. Yoon, S. H., & Ji, Y. G. (2019). Non-driving-related tasks, workload, and takeover performance in highly automated driving contexts. Transport. Res. F Traffic Psychol. Behav., 60, 620-631. https://doi.org/10.1016/j.trf.2018.11.015 Go to original source...
  75. Young, K., Regan, M., & Hammer, M. (2007). Driver distraction: A review of the literature. Distracted driving. In I. J. Faulks, M. Regan, M. Stevenson, J. Brown, A. Porter & J. D. Irwin (Eds.), Distracted driving (pp. 379-405). Sydnes, NSW: Australasian College of Road Safety.
  76. Zeeb, K. (2016). Der Einfluss fahfremder Tätigkeiten auf die Fahrerübernahme während des hochautoamtisierten Fahrens. Dissertation. Heinrich-Heine-Universität, Düsseldorf. https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=41406
  77. Zeeb, K., Haertel, M., Buchner, A., & Schrauf, M. (2017). Why is steering not the same as braking? The impact of non-driving related tasks on lateral and longitudinal driver interventions during conditionally automated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 50, 65-79. https://doi.org/10.1016/j.trf.2017.07.008 Go to original source...
  78. Zhang, B., De Winter, J., Varotto, S., Happee, R., & Martens, M. (2019). Determinants of take-over time from automated driving: A meta-analysis of 129 studies. Transportation Research Part F: Traffic Psychology and Behaviour, 64, 285-307. https://doi.org/10.1016/j.trf.2019.04.020 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.